
Journal of Computational Physics 224 (2007) 267–287

www.elsevier.com/locate/jcp
Adjoint-based aerodynamic shape optimization
on unstructured meshes

G. Carpentieri a,*, B. Koren a,b, M.J.L. van Tooren a

a Delft University of Technology, Faculty of Aerospace Engineering, Kluyverweg 1, 2629 HS Delft, The Netherlands
b Centre for Mathematics and Computer Science, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

Received 15 September 2006; received in revised form 5 January 2007; accepted 9 February 2007
Available online 23 February 2007

This paper is dedicated to Professor Pieter Wesseling, aeronautical engineer and expert in computational fluid dynamics.
Abstract

In this paper, the exact discrete adjoint of an unstructured finite-volume formulation of the Euler equations in two
dimensions is derived and implemented. The adjoint equations are solved with the same implicit scheme as used for the
flow equations. The scheme is modified to efficiently account for multiple functionals simultaneously. An optimization
framework, which couples an analytical shape parameterization to the flow/adjoint solver and to algorithms for con-
strained optimization, is tested on airfoil design cases involving transonic as well as supersonic flows. The effect of some
approximations in the discrete adjoint, which aim at reducing the complexity of the implementation, is shown in terms of
optimization results rather than only in terms of gradient accuracy. The shape-optimization method appears to be very
efficient and robust.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Shape optimization; Discrete adjoint; Unstructured solvers
1. Introduction

Aerodynamic shape optimization can be efficiently performed by means of the adjoint method which
enables functional gradients to be calculated at the price of roughly one additional flow computation [16]. This
method is very attractive in its discrete approach where the adjoint problem is directly formulated for the dis-
cretized flow equations [14]. The method is relatively easy to understand since only some linear algebra is
involved. Nevertheless, the derivation of the discrete adjoint code may be challenging due to the complexity
of differentiating the original discrete formulation. Hand-coding the adjoint may require a lot of human work
but it has the potential of yielding an efficient code as well as a deep understanding of the process
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2007.02.011

* Corresponding author.
E-mail addresses: g.carpentieri@tudelft.nl (G. Carpentieri), barry.koren@cwi.nl (B. Koren), m.j.l.vantooren@tudelft.nl (M.J.L. van

Tooren).

mailto:g.carpentieri@tudelft.nl
mailto:barry.koren@cwi.nl
mailto:m.j.l.vantooren@tudelft.nl

268 G. Carpentieri et al. / Journal of Computational Physics 224 (2007) 267–287
[6,2,29,27,24,1]. Automatic Differentiation tools to generate the code may be successfully applied at a strongly
reduced human effort. However, computational efficiency issues should not be underestimated when using the
so-called reverse mode [25,13,26]. A broad review of sensitivity analysis and shape optimization can be found
in [28].

In this work, the adjoint algorithm is hand-coded following a methodology outlined in previous works [3,5],
in the context of implicit solver development. Only the geometric sensitivities are computed by using the for-
ward mode of Automatic Differentiation. The discrete adjoint implemented here is exact since the residual
Jacobian and all the geometric sensitivities are obtained from the exact differentiation of the code. The exact-
ness of the hand-coded residual Jacobian is demonstrated through the quadratic convergence property of
Newton iterations.

In practice, to simplify the derivation of the adjoint code, different approximations can be made in the dif-
ferentiation. In turn, these approximations can have a detrimental effect on the gradient accuracy
[6,2,29,18,27]. To judge whether some of these approximations are acceptable, their effects on the optimization
behavior should be considered [12,9]. These effects will be investigated here in terms of optimization results
rather than only in terms of gradient accuracy.

The solution process for the adjoint problem, despite the linearity of the equations, can be the same time
marching as adopted in the flow solver [29,13,30]. This greatly simplifies the coding and gives a robust
adjoint solver. Here, an implicit time stepping is used, which is modified to account for the solution of
the adjoint of multiple functionals. In fact, in constrained shape optimization more than one functional
is usually involved so that it is convenient to solve the adjoint problems simultaneously rather than
sequentially.

The flow and the adjoint solver are part of an optimization framework, which includes the shape parame-
terization and optimization algorithms. The shape parameterization used here is based upon orthogonal
Chebyshev polynomials [42]. This parameterization is relatively unexplored in the literature [34] in spite of
its interesting features. It gives completeness in the design space and behaves smoothly during the optimization
process even in case of large shape deformations.

Two optimization algorithms are used. The first one is a Sequential Quadratic Programming algorithm
taken from an external library. The second one is a Sequential Linear Programming algorithm, known as
the method of centers, which has been applied for the first time to shape optimization problems by the present
authors [10]. Two test cases are presented that show the effectiveness of the algorithm.

In summary, the paper contributes to the field of adjoint-based shape optimization with the following: (i) an
exact discrete adjoint assembly for unstructured finite-volume solvers, of which a detailed description is given
and exactness is demonstrated, (ii) the investigation of several approximations in the exact adjoint code
in terms of optimization results, (iii) the efficient simultaneous solution of multiple adjoint equations, and
(iv) shape parameterization by orthogonal Chebyshev polynomials in the context of adjoint-based shape
optimization.

The effectiveness and robustness of the method are demonstrated on several constrained design cases in
transonic and supersonic flow.

2. Finite volume formulation

The Euler equations are written in integral form as
d

dt

Z
V

udXþ
I

oV
F � ndC ¼ 0; ð1Þ
where V is a volume contained in the domain X. The vector n is the outward unit normal on the boundary oV

of V. The quantities u and F are the conservative variables vector and the flux vector, respectively:
u ¼
q

qw

qet

264
375; FðuÞ ¼

qwT

qwwT þ pI

qhtw
T

264
375: ð2Þ

G. Carpentieri et al. / Journal of Computational Physics 224 (2007) 267–287 269
Both are defined as functions of the primitive variables v ¼ ½q;w; p�T, which are density, velocity (w ¼ ½wx;wy �T
in 2D) and pressure. Other quantities to be defined are the total specific energy et ¼ p=ððc� 1ÞqÞ þ w � w=2 and
the total specific enthalpy ht ¼ et þ p=q. The perfect gas equation p ¼ qRT is used to provide closure of the
system.

Eq. (1) is discretized in a finite-volume framework [35,43]. For each internal control volume it holds
V i
dui

dt
þ
X

k¼1;Ni

Uðûi; ûk; nikÞ ¼ 0; ð3Þ
where U is the numerical flux evaluated at the interface oVik between two control volumes i and k. The
numerical flux depends on the integrated normal nik (�

R
oV ik

ndC) and on the left and right states ûi and ûk.
Summation of the numerical flux across all the control volume interfaces oVik gives the control volume
residual ri �

PNi
k¼1Uðûi; ûk; nikÞ. The hat on the states denotes extrapolation/reconstruction at the control

volume interfaces in order to distinguish from the cell-average values ui and uk. The primitive variables are
reconstructed following a MUSCL-type approach [4]. For each variable vi a limited linear reconstruction is
made across each control–volume interface oVik:
v̂i ¼ vi þ rirvT
i ðxik � xiÞ; ð4Þ
where ri is a slope limiter, $vi the variable gradient and xik the mid-point location of oVik. The slope limiter is
that of Venkatakrishnan [40] defined as
ri ¼ min
k¼1;Ni

a2
i þ 2aiDvik þ e

a2
i þ aiDvik þ 2Dv2

ik þ e

� �
; ð5Þ
with Dvik ¼ rvT
i ðxik � xiÞ being the unlimited differential, e a threshold, ai ¼ vmax � vi for Dvik P 0 and

ai ¼ vmin � vi for Dvik < 0. The values vmax and vmin are the extrema of vi on the stencil Ni, which is a set com-
posed by i and all its distance-one neighbors (k ¼ 1;Ni; see Fig. A.1 in the Appendix). The gradient $vi is com-
puted using a linear least-squares technique [4] that reconstructs linear polynomials exactly. A Green–Gauss
gradient is also available. The numerical flux is evaluated using Roe’s approximate Riemann solver [33], which
for a generic edge ij reads
Uij ¼ Uðui; uj; nijÞ ¼
1

2
ðFðuiÞ þ FðujÞÞ � nij �

1

2
jAð~uij; nijÞjðuj � uiÞ; ð6Þ
where jAj ¼ jdðFðuÞ � nÞ=duj is the absolute flux Jacobian evaluated with the Roe averages ~uij. Eq. (3) is com-
pleted by adding suitable terms when a control volume i is lying on the domain boundary. More specifically,
flux vector splitting is used for far-field boundaries and zero normal velocity is imposed on the wall flux.
Eq. (3) can be rewritten in the semi-discrete form
D
dU

dt
þ R ¼ 0; ð7Þ
where D is a diagonal matrix containing the control volumes, U ¼ ½u1; u2; . . . ; uN �T and R ¼ ½r1; r2; . . . ; rN �T are
the conservative variables and the residual vector, respectively. The total number of control volumes is de-
noted by N. Since a median dual formulation is used, which stores the unknowns at the nodes of the mesh,
the number of control volumes N is the number of nodes in such a mesh. An edge-based data structure is used
in the solver [4]. Due to the flexibility of the formulation, hybrid meshes of triangular and quadrilateral ele-
ments can be easily processed [35]. Time marching of Eq. (7) is addressed in Section 4.

Fig. 1 compares the pressure distribution of the present solver with that of a structured flow solver [19]
that uses variable extrapolation together with an Osher flux and Koren’s limiter [20]. The mesh used for
the computation was a 128 · 80 O-mesh. The present solver uses an unstructured triangular mesh of 8000
nodes with almost the same number of nodes on the wall. Additional comparisons can be found in [7].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
—1.5

—1

—0.5

0

0.5

1

1.5

X/C

C
p

STRUCTURED SOLVER
UNSTRUCTURED SOLVER

Fig. 1. Pressure distribution of the unstructured solver compared with that of a structured solver (NACA0012, a = 1.25� and M1 ¼ 0:8).

270 G. Carpentieri et al. / Journal of Computational Physics 224 (2007) 267–287
3. Adjoint formulation: exact discrete adjoint for the MUSCL scheme

3.1. The adjoint method

Consider a functional J (e.g., lift or drag) for which the sensitivity with respect to a set of shape parameters
(ak is one of these parameters) must be computed. The functional is also dependent on the flow variables as
well as on the shape of the domain according to the shape parameters: J ¼ JðU; akÞ. An efficient way to
accomplish the computation is via an augmented functional L. Using a terminology similar to that used in
control theory [16] the conservative variables U can be identified as state variables and the set of shape parame-
ters as decision variables. The state of the system is represented by the residual vector RðU; akÞ, which depends
on both state and decision variables. The functional L is obtained by augmenting J with the state of the sys-
tem. A vector of multipliers KJ is introduced:
LðU; ak;KJ Þ ¼ JðU; akÞ � KT
J RðU; akÞ: ð8Þ
At the stationary point of the augmented functional L its sensitivity coincides with that of the original func-
tional J, dJ=dak � oL=oak. Imposing the stationary condition to the augmented functional, [oL=oU;
oL=oak; oL=oKJ � ¼ 0, gives a set of three equations. The first equation and the second equation are the adjoint
equation and the equation for the sensitivity of the functional J, respectively:
oR

oU

T

KJ ¼
oJ
oU

T

;
dJ
dak
¼ oJ

oak
� KT

J

oR

oak
: ð9Þ
The third equation is the state equation, R = 0, which is solved using the finite-volume solver introduced be-
fore. The sensitivity is calculated using the multipliers or adjoint variables KJ obtained by solving the adjoint
equation. Interesting feature of the method is that a single adjoint solution can be used to compute the sen-
sitivity of one functional with respect to many shape parameters. However, since each functional J has its own
adjoint KJ, the adjoint equation must be solved as many times as the number of functionals. The two equa-
tions in (9) can be referred to as the dual problem. In contrast, the primal problem evaluates the functional
sensitivity by directly using the flow sensitivity dU=dak computed from the linearized flow equations:
oR

oU

dU

dak
¼ � oR

oak
;

dJ
dak
¼ oJ

oak
þ oJ

oU

dU

dak
: ð10Þ
A drawback of this approach is that the linearized flow equation, the first equation in (10), must be solved as
many times as the number of shape parameters. On the other hand, one solution of the linearized flow equa-
tion can be used to compute the sensitivity for all functionals. Hence, the dual problem is convenient when the
number of functionals to be solved is less than the number of shape parameters. If this is not the case, the
primal problem becomes more efficient. Usually, in aerodynamic shape optimization there is a limited number

G. Carpentieri et al. / Journal of Computational Physics 224 (2007) 267–287 271
of functionals and a large number of shape parameters so that the dual problem is advantageous. By manipu-
lation of Eqs. (9) and (10) it can be shown that the sensitivities obtained by the two approaches are identical.

3.2. The derivation of the exact discrete adjoint

In the present work a discrete adjoint [14] is used, which means that the dual problem is directly formulated
from the discretized equations. The challenging part of this approach is the derivation of the transposed resid-
ual Jacobian [oR/oU]T which, as mentioned, involves differentiation of the original finite-volume solver. To
properly derive, implement and check the accuracy of the transposed residual Jacobian [oR/oU]T, it is neces-
sary to have the residual Jacobian oR/oU available.

In order to derive both Jacobians, following previous work [5], three new vectors of length E equal to the
number of control volume interfaces are introduced. For a median-dual formulation, as the one used here, E is
equal to the number of edges in the mesh. The first vector H ¼ ½ bU1; bU2; . . . ; bUE�T contains the second-order
fluxes for each edge. The second and third vectors, UL ¼ ½ûL1; ûL2; . . . ; ûLE�T and UR ¼ ½ûR1; ûR2; . . . ; ûRE�T,
contain the reconstructed left and right states for each edge, respectively. The dependency of the residual Jaco-
bian on the conservative variables can be expressed with these vectors as R ¼ RðHðULðUÞ;URðUÞÞÞ. There-
fore, by means of the chain rule, the residual Jacobian and the transposed residual Jacobian are obtained as
oR

oU
¼ oR

oH

oH

oUL

oUL

oU
þ oH

oUR

oUR

oU

� �
; ð11Þ

oR

oU

T

¼ oUL

oU

T oH

oUL

T

þ oUR

oU

T oH

oUR

T� �
oR

oH

T

; ð12Þ
where oR/oH is a rectangular dummy matrix of size E · N. Each column numbered as an edge has only two
non-zero entries on the rows corresponding to the left and the right nodes of the edge. Values for these two
non-zero entries are �1 and +1, respectively (see Eq. (A.3)). oH/oUL and oH/oUR are square diagonal matri-
ces of size E · E. They contain for each edge the numerical fluxes differentiated with respect to the left and
right states, respectively.

More complex is the matrix oUL/oU, rectangular of dimensions N · E, containing the differentiation of the
reconstructed left states with respect to the cell averages in their stencil. Since the reconstruction is linear, on
each row the non-zero entries will be positioned in the columns corresponding to the left state and its distance-
one neighbors. The same holds for the matrix oUR/oU where in this case the right state must be considered.
Each element of these matrices is a square matrix of size equal to the number of variables, for instance 4 · 4
for the 2D Euler equations.

In practice [oR/oU]T or oR/oU are not constructed at all. More likely their products with vectors are
directly computed on-the-fly by looping over the edges of the mesh in much the same way as for the residual
vector R. In fact, R is assembled with a loop over the edges exploiting the conservation property, see Eq. (A.3).
In the appendix, the derivation of the assembly of Eqs. (11) and (12) is given together with some details about
the exact differentiation of the reconstruction operator and the numerical flux.

The exactness of the residual Jacobian oR/oU has been tested using two methods. The first method is the
direct comparison with matrix–vector products computed by different means. For instance, the Fréchet deriva-
tive (FD) of the residual vector, ½oR=oU�P ¼ ðRðUþ �PÞ � RðUÞÞ=� with �! 0, can be used. Unfortunately,
this derivative is not very accurate due to truncation and cancellation errors. Therefore, the residual code has
also been differentiated in forward mode using the automatic differentiation (AD) tool Tapenade [37]. A code
that is capable of computing exact matrix–vector products has been generated. Fig. 2a shows the differences of
the matrix–vector product implemented here compared with the Fréchet derivative (� ¼ 10�7) and with the
AD code. As can be seen, the agreement with the AD code is up to machine zero.

The second method has never been used in the context of sensitivity analysis, it is a very robust way of veri-
fying the exactness of the code. It checks the accuracy of the Jacobian indirectly, employing the latter in an
implicit pseudo-time stepping procedure (see Section 4). This iterative procedure becomes Newton’s method
for infinitely large time steps. As can be seen from the residual history in Fig. 2b, the exact Jacobian attains a
quadratic convergence and in only 5 iterations the residual is reduced by 10 orders of magnitude. Quadratic

-20

-18

-16

-14

-12

-10

-8

-6

-4

 0 1000 2000 3000 4000 5000 6000 7000 8000

LO
G

(D
IF

FE
R

EN
C

ES
)

MESH POINTS

EXACT-FD
EXACT-AD

-14

-12

-10

-8

-6

-4

-2

 0

 20 40 60 80 100 120 140

LO
G

(S
C

AL
ED

 R
ES

ID
U

AL
S)

NUMBER OF ITERATIONS

FIRST-ORDER, APPROX. JACOBIAN
EXACT JACOBIAN

Fig. 2. Exactness of the Jacobian. Results are obtained from the computation of the RAE2822 airfoil at M1 ¼ 0:73 and a = 2� on an
unstructured 2107 nodes mesh.

272 G. Carpentieri et al. / Journal of Computational Physics 224 (2007) 267–287
convergence is not obtained if the differentiation is not exact, for instance, if limiters are ignored (i.e., if they
are considered to be constant in the differentiation, see Eq. (A.12)) or if a programming error is present.
Finally, once the accuracy of oR/oU has been verified, the accuracy of the transposed Jacobian is checked
by means of the matrix identity PT

1 ½oR=oU�P2 ¼ PT
2 ½oR=oU�TP1, which in this case is satisfied to machine accu-

racy (P1 and P2 are two generic vectors).

4. Time marching of flow and adjoint equations

Both the flow equations and the adjoint equations are advanced in time using implicit time stepping. The
scheme is essentially the same for both solvers. At each time step a system of linear equations arises, which is
solved iteratively to the required level of accuracy.

4.1. Implicit pseudo-time stepping

In order to derive an implicit pseudo-time stepping scheme for the semi-discrete system in Eq. (7), the time
derivative can be discretized using a forward approximation, DðdU=dtÞ � DtðUnþ1 �UnÞ, whereas the residual
term can be expanded linearly, RðUnþ1Þ � RðUnÞ þ oR=oUnðUnþ1 �UnÞ. After rearrangement, the backward
Euler scheme is obtained, which can be written as
Dt þ
oR

oU

� �n

ðUnþ1 �UnÞ ¼ �Rn; ð13Þ
where the diagonal matrix Dt contains the control volumes divided by their local time steps (V i=Dti). For infi-
nitely large time steps, the time derivative vanishes and Eq. (13) becomes Newton’s method. Because of the
second-order spatial discretization, the Jacobian oR/oU is poorly diagonally dominant. As a consequence,
the solution of the linear system of equations arising at each time step is hard to obtain. To get a more
diagonally dominant Jacobian, better suited for iterative solutions, a common practice is to use an approxi-
mate Jacobian [4,41,23,29] in Eq. (13). This practice is equivalent to a defect correction approach [19] in pseu-
do-time,
DtðUnþ1 �UnÞ þ eRðUnþ1Þ ¼ eRðUnÞ � RðUnÞ; ð14Þ

where eR is the residual of a lower-order discretization. In fact, taking a linear expansion of the residualeRðUnþ1Þ, after some rearrangement one obtains
Dt þ
oeR
oU

 !n

ðUnþ1 �UnÞ ¼ �Rn: ð15Þ
Compared to the Jacobian in Eq. (13), the Jacobian oeR=oU is more diagonally dominant since it is obtained
from a lower-order discretization. Consequently, the solution of the linear system is relatively easy and robust.

G. Carpentieri et al. / Journal of Computational Physics 224 (2007) 267–287 273
The price to pay for using a lower-order approximation of the Jacobian in Eq. (15) is the loss in quadratic
convergence rate (see Fig. 2b). In the present work, the Jacobian oeR=oU is first-order accurate, since the
reconstruction contribution is neglected, and approximate, since the Roe matrix is frozen in the differentiation
of the numerical flux in Eq. (6) (see next section).

In order to speed up the convergence, at each iteration the time step is increased according to a CFL-num-
ber update of the type CFLn ¼ bCFLn�1L2ðRn�2Þ=L2ðRn�1Þ, where L2ðRÞ is a discrete norm of the residual vec-
tor and b a suitable parameter. Depending on the flow type the CFL-number is limited to a maximum value or
it is left free to increase to infinity.

The adjoint equation appearing in the dual problem of Eq. (9) is a linear system for the adjoint variables KJ.
Due to the off-diagonal contribution arising from the reconstruction operator the system is poorly diagonally
dominant. A time-like contribution can be added, which results in a more robust solver [30]. In practice, the
time-stepping and settings used for the flow solver are also used in the adjoint solver:
Dt þ
oeR
oU

T !n

ðKnþ1
J � Kn

J Þ ¼ �
oR

oU

T

Kn
J �

oJ
oU

T� �
: ð16Þ
Constrained shape optimization problems may require Eq. (16) to be solved as many times as the number of
functionals. One has to compute the adjoint KJ of each functional J. Eq. (16) is a linear system of equations,
which is solved iteratively at each time step n. As described in the next section, the solution method does not
require the inversion of the matrix appearing at the left-hand side of the equation. Only matrix–vector prod-
ucts are required for both the left- and right-hand sides, products that are always computed on-the-fly.

The matrix terms are expensive to compute, but they are identical for all functionals. Hence, it makes sense
to perform more matrix–vector products simultaneously. Thus, rather than solving Eq. (16) sequentially for
each adjoint KJ, one can simultaneously solve for all the adjoints at once. Numerical experiments show that
simultaneous time stepping gives an appreciable time saving compared to sequential solution.

Results for a supersonic flow are shown in Fig. 3. An unstructured mesh of 27,684 triangles and 13,962
nodes has been used for the computation. Values of cl ¼ 0:5202 and cd ¼ 0:1553 are found, which are in agree-
ment with the values cl ¼ 0:5237 and cd ¼ 0:1551 given in [19]. The residuals of the adjoint and the linearized
-12

-10

-8

-6

-4

-2

 0

 2

 20 40 60 80 100 120 140 160 180 200

LO
G

(S
C

AL
ED

 R
ES

ID
U

AL
S)

NUMBER OF ITERATIONS

FLOW
ADJOINT

LINEARIZED

-12

-10

-8

-6

-4

-2

 0

 2

 0 50 100 150 200 250 300 350 400 450 500

LO
G

(S
C

AL
ED

 R
ES

ID
U

AL
S)

CPU time (sec)

FLOW
1 ADJOINT
2 ADJOINT
3 ADJOINT

Fig. 3. NACA0012 airfoil at M1 ¼ 1:2 and a = 7�.

274 G. Carpentieri et al. / Journal of Computational Physics 224 (2007) 267–287
solver, see Fig. 3a, converge at the same rate as the flow residual. The linearized solver for the primal problem
is defined in Eq. (10), and similarly to the adjoint, it uses the same solution method as the flow solver. The
convergence in terms of CPU time, which is useful to know the efficiency of the adjoint solver compared to
that of the flow solver, is depicted in Fig. 3b. Considering the slope of the linear part for each line, the flow
solver takes 13 s to lower the residual one order of magnitude whereas one adjoint solution (second line from
the left) takes 19 s. Hence, solving three adjoint problems sequentially would take 57 s. As can be seen from
Fig. 3b, with the solution method implemented here, three adjoints (fourth line from the left) can be solved
simultaneously spending 35 s for each order of magnitude; a time saving of almost 40%.

The contours of the third adjoint variable, which represents the sensitivity of the lift coefficient to changes
in vertical momentum, are depicted in Fig. 3d. It is nice to see that they have a reverse trend compared to the
Mach contours depicted in Fig. 3c. This is due to the fact that the functional on the airfoil cannot be influenced
by the downstream region due to the supersonic nature of the flow in which disturbances do not propagate
upstream [31]. The quiet zone is simply the zone in which any perturbation in y-momentum does not affect
the lift coefficient. The interested reader is referred to [14] for a further discussion of the mathematical and
physical meaning of the adjoint variables.

4.2. Linear system of equations

At each time step, Eq. (15) implies the solution of a linear system. A simple iterative procedure is employed
which, given the linear system Az ¼ b, computes corrections of the type:
zkþ1 ¼ zk þ Dz; Dz ¼ P�1rk
L; rk

L ¼ b� Azk; ð17Þ

where rk

L is the residual of the linear system and P the preconditioner computed from A. The preconditioner
should be a good approximation of the original matrix (P � A) and moreover it should be relatively simple to
invert. The Symmetric Successive Overrelaxation, SSOR, preconditioner has been implemented. It can be ex-
pressed as P ¼ ðDþ LÞD�1ðDþUÞ, where the matrices D, L and U are the diagonal, strictly lower and strictly
upper part of the matrix A (again, each matrix element is a matrix of size 4 · 4). The preconditioner can be
inverted by means of a forward solve, ðDþ LÞDz� ¼ rk

L, which is performed with one sweep on the nodes:
Dz�i ¼ D�1
i rk

Li
�
X
j2Li

LijDz�j

 !
; ði ¼ 1;NÞ; ð18Þ
followed by a backward solve, ðIþD�1UÞDz ¼ Dz�, which is performed with another sweep on the nodes:
Dzi ¼ Dz�i �D�1
i

X
j2Ui

UijDzj; ði ¼ N ; 1Þ; ð19Þ
with Li and Ui subsets of the stencil Ni (8j 2Li : j < i and 8j 2 Ui: j > i). For a first-order Jacobian, each
edge produces four non-zero entries: two on the diagonal and two off-diagonal [23]. Therefore, the non-zero
entries for each node (a Jacobian row) are only the nodes in the stencil. A pointer which links each node with
its nearest neighbors, with suitably ordered elements, can be easily created in order to perform the sweeps in
Eqs. (18) and (19). The elements of D, L and U are
Di ¼
V i

Dti
Iþ

XNi

j¼1

oUij

oui
; Lij ¼ �

oUij

oui
; Uij ¼

oUij

ouj
: ð20Þ
The diagonal elements, Di, are precomputed and stored prior to the execution of the two sweeps. The off-diag-
onal elements can also be precomputed and stored or, optionally, computed on-the-fly for each node during
the two sweeps, making the method completely matrix-free. The numerical flux Jacobians in Eq. (20) are
approximated (recall that the Jacobian in Eq. (15) was defined to be first-order and approximate) since the
Roe matrix jAj of Eq. (6) is frozen in the differentiation:
oUij

oui
� 1

2
ðAi þ jAjÞ;

oUij

ouj
� 1

2
ðAj � jAjÞ; ð21Þ
where Ai ¼ Aðui; nijÞ, Aj ¼ Aðuj; nijÞ and jAj ¼ jAð~uij; nijÞj.

G. Carpentieri et al. / Journal of Computational Physics 224 (2007) 267–287 275
For the adjoint solution, for which the elements of the preconditioner are transposed, the matrices DT
i , LT

ij

and UT
ij are employed. Moreover, UT

ij should be used in Eq. (18) instead of Eq. (19) and vice versa. In the case
of multiple right-hand sides, there are a number of linear residuals that must be preconditioned, one for each
functional J. For instance, consider Eq. (18); there Dz�i is computed given rLk

i
for each functional, with D�T

i and
UT

ij being equal for all functionals. This practice consists of simultaneously solving several linear systems that
have the same matrix.

The solution method for the preconditioner presented above, the lower and upper sweeps of Eqs. (18) and
(19), is similar to that used for the LU-SGS method [22]. However, the latter uses increments to compute
matrix–vector products of the flux Jacobian with vectors, e.g., UijDzj ¼ ðFðuj þ DzjÞ � nij � FðujÞ � nijþ
qAijDzjÞ=2. Moreover, rather than the Roe matrix jAð~uij; nijÞj, its spectral radius qAij ¼ jwij � nijj is used [17].
Note that for the adjoint equations this method is not suitable since increments cannot be employed because
of the transposition.
5. Shape parameterization, mesh deformation and geometric sensitivities

5.1. Shape parameterization by means of Chebyshev polynomials

The parameterization of the geometry plays a crucial role in shape optimization. A limited parameteriza-
tion would inhibit the chance to approach an optimum design. In this work an orthogonal Chebyshev poly-
nomial representation is used first to approximate the airfoil and then to deform its shape during the
optimization process. The orthogonality property is important since it gives completeness of the design space.
This parameterization can be defined as a series of basis functions [42,36],
fdðxÞ ¼
XND

k¼0

akDkðxÞ; Dk ¼ T k � T kþ2;

T kðxÞ ¼ cosðkcðxÞÞ; cðxÞ ¼ cos�1ð2
ffiffiffi
x
p
� 1Þ; ðk P 0; 0 6 x 6 1Þ; ð22Þ
where ND is the number of basis functions, and where Dk are the basis functions and ak the shape parameters
or basis function coefficients. Fig. 4 shows the basis functions Dk. It is interesting to see how the first basis,
k ¼ 0, resembles an airfoil shape.

Others use orthogonal shape functions [21,32,11] aiming at a complete representation of the design space,
hence at a better convergence of the optimization process. These works derive the shape functions by means of
a Gram–Schmidt orthonormalization process, given the initial shape. With the Chebyshev representation used
here, the basis functions are available from Eq. (22). Only the coefficients ak must be evaluated in order to
approximate a given initial shape.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

—2

—1.5

—1

—0.5

0

0.5

1

1.5

2

X/C

D
k

k = 0

k = 1

k = 2

k = 3

Fig. 4. Basis functions.

276 G. Carpentieri et al. / Journal of Computational Physics 224 (2007) 267–287
Eq. (22) can be used to approximate the airfoil following two approaches. One approach is to use the cam-
ber line method in which the camber and the thickness distributions are approximated independently. Another
option, which is the one preferred in this work, is to directly approximate both the upper and the lower curves.

Given a set of Np airfoil coordinates (½xi; yi�; i ¼ 1;N p) a local error (�i ¼ jfdðxiÞ � yij), an average error
(�m ¼ 1=N p

PNp

i¼1�i) and a maximum error (�M ¼ max �i) can be defined. In order to approximate the airfoil
an unconstrained minimization algorithm can be used to reduce a weighted linear combination of maximum
and average error. A certain maximum error in the representation must be achieved in order not to have too
large discrepancies between the functionals computed on the original airfoil and on the approximated airfoil.
An investigation in [38] shows that for most CFD solvers in use, a maximum error of �M ¼ 8� 10�5 suffices.
Using the Chebyshev polynomials different airfoils have been successfully approximated to the required maxi-
mum error [8]. ND ¼ 11 basis functions per curve was found to be satisfactory for the airfoils considered here.
Thus, in the present work a total of 22 design basis functions is employed for each airfoil.

Since the shape parameterization is defined analytically, it is easy to calculate the slope and the radius of
curvature at any point of the parameterized curve by taking derivatives of Eq. (22). They are obtained as arc-
tan fd and ð1þ f 0d

3Þ
1
2=f 00d , respectively.

These quantities are used to compute the trailing edge angle, h, and the radii of curvature at the nose, ru and
rl, for the purpose of imposing geometric constraints. Two radii of curvature are computed at the leading edge
due to a lack of continuity of the derivatives at that point. In fact, the derivatives of fdðxÞ in x ¼ 0 and x ¼ 1
can only be considered in the limit as x! 0 and x! 1.

5.2. Mesh deformation

When a shape parameter ak changes, a displacement DXB in the boundary of the computational domain is
imposed and therefore the mesh coordinates X must be updated accordingly. The latter are functions
X ¼ X½DXBðakÞ� of the shape parameter.

A mesh deformation technique, known as spring analogy, is used to evaluate a displacement DX. The dis-
placement of each internal node is initialized to zero whereas the displacement of the boundary points, con-
tained in the set B, is initialized to DXB. The displacement of each point DXi is then iteratively solved with
Jacobi iterations:
DXkþ1
i ¼

PNi
j¼1kijDXk

jPNi
j¼1kij

; ði ¼ 1;N ; i 62 BÞ; ð23Þ
where Ni is the number of nearest neighbors of the node i and kij is the stiffness associated with the edge ij. The
latter has a numerical value equal to the inverse of the edge length. By means of Eq. (23), the boundary dis-
placement DXB is iteratively propagated in the whole domain. When the iterations are stopped, the mesh coor-
dinates are updated as Xnew ¼ Xþ DX.

5.3. Geometric sensitivities via Automatic Differentiation

Once the adjoint variables have been computed, the gradient of the functional dJ/dak is obtained using the
second formula in Eq. (9), which requires the computation of the geometric sensitivities oJ/oak and oR/oak.
For this purpose, the forward mode of Automatic Differentiation can be employed. Contrary to the reverse
mode, the forward mode relies on basic linearization rules and it does not suffer from memory issues. The
AD tool Tapenade [37] has been used. It allows to compute oR/oak for the complete design vector
½a1; a2; . . . ; aN � in one shot. In abstract form, the residual vector has a dependency R ¼R½X; NðXÞ;
rVðXÞ; RðXÞ� on the mesh points. N is the grid metrics, the integrated normal vectors in the grid and on
the boundary, and $V and R are the primitive variables gradient and the limiter vector, respectively. Recalling
that X ¼ X½DXBðakÞ�, after application of the chain rule the complete derivative reads:
oR

oak
¼ oR

oX
þ oR

oN

oN

oX
þ oR

orV

orV

oX
þ oR

oR
oR
oX

� �
oX

oDXB

oDXB

oak
; ð24Þ

G. Carpentieri et al. / Journal of Computational Physics 224 (2007) 267–287 277
where in practice, each term corresponds to a differentiated sub-routine. oDXB/oak is the differentiation of the
shape parameterization routine with respect to the shape parameter, oX/oDXB is the differentiation of the
spring analogy routine with respect to the boundary displacement. o$V/oX and oR/oX are the limiter and gra-
dient routines, which are differentiated with respect to the mesh points. oR/oX, oR/oN, oR/o$V and oR/oR
represent the differentiation of the residual routine with respect to mesh points, metrics, gradients and limiters,
respectively.

6. Shape optimization

6.1. The optimization problem

The present work focuses on a shape optimization problem in which the drag coefficient cd of the airfoil
must be reduced and a certain number of constraints must be satisfied. The constraints are enforced on the
lift coefficient cl and on geometric quantities such as the relative maximum thickness (t/c)max, the trailing edge
angle h, and the radii of curvature at the nose, ru and rl (see Section 5). Only for one test case, a constraint is
also imposed on the pitching moment coefficient cm.

The lift constraint is considered as an equality, necessary in order not to reduce the drag coefficient at the
expense of the lift. The relative maximum thickness constraint, considered as inequality, is necessary for avoid-
ing the section to become too thin. The other constraints, on the nose radius and on the trailing edge angle, are
included to ensure the feasibility of the shape. For instance, very sharp nose and very thin trailing edge are not
desirable from a point of view of manufacturability as well as off-design conditions. Moreover, apart from
real-life issues, unfeasible shapes can cause the break-down of the optimization process.

If bounds on the design variables are included, the problem is a bound-constrained optimization which, in
general, can be formally stated as
min f ðxÞ;
gjðxÞ 6 0 ðj ¼ 1; ngÞ;
hkðxÞ ¼ 0 ðk ¼ 1; nhÞ;

xL 6 x 6 xU; ð25Þ
where x ¼ ½a1; a2; . . . ; aN � is the design vector which contains the shape parameters. The objective function is
the scaled drag coefficient, f ¼ cd=cdR with cdR indicating a reference value (in the following the subscript R

will always indicate reference values). The thickness constraint is defined as g1 ¼ 1� ðt=cÞmax=ðt=cÞmaxR, the
upper and lower nose radius constraints are g2 ¼ 1� ru=ruR and g3 ¼ 1� rl=rlR whereas the trailing edge angle
constraint is g4 ¼ 1� h=hR. The lift constraint is defined as h ¼ cl=clR � 1.

The reference values for the constraints define the feasible design space. For the objective function, the ref-
erence value is only used for the purpose of scaling. In the following, the reference values are considered as
initial values multiplied by a constant (the initial values are indicated with the subscript 0).

6.2. Optimization algorithms

An easy way to handle the constraints is to include them in the objective function as penalty terms with the
clear advantage of being able to use unconstrained optimization techniques. However, the accuracy of this
method is known to be poor and, moreover, it can lead to ill-conditioning of the optimization problem [39].

Optimization algorithms that are capable of dealing directly with the constraints are more appropriate.
Two algorithms of this kind are employed here. One is the Sequential Quadratic Programming (SQP) algo-
rithm, which uses second-order information that is obtained by updating the Hessian matrix of the Lagrang-
ian with a BFGS formula. The other one is a Sequential Linear Programming (SLP) algorithm, known as the
method of centers, which has been investigated recently by the authors for shape optimization purposes [10].
The algorithm uses only first-order information and is based upon linearization of the non-linear optimization
problem defined in Eq. (25). Linear programming algorithms, such as the Simplex method, are then used to
solve the linearized problem.

278 G. Carpentieri et al. / Journal of Computational Physics 224 (2007) 267–287
6.3. Approximation in the discrete adjoint

Approximations can be introduced in the differentiation in order to simplify the implementation of the dis-
crete adjoint. These approximations imply that the adjoint equation, the first equation in (9), is solved with an
approximate Jacobian rather than the exact Jacobian. Three approximations are considered in this work:
(i) The first approximation is obtained by neglecting the differentiation of the limiter in the reconstruction
operator, which is described in detail in Eq. (A.12). In practice, it means that approximations are introduced
in the matrices oUL/oU and oUR/oU of Eq. (12). The simplification is appreciable since the limiter imple-
mented here requires a construction phase which is quite involved compared to that of mono-dimensional lim-
iters [4]. (ii) The second approximation is obtained by neglecting the differentiation of the Jacobian matrix in
the Roe flux, i.e., it uses Eq. (21) instead of Eq. (A.14). In this case approximations are also introduced in the
matrices oH/oUL and oH/oUR of Eq. (12). This approximation saves a lot of human work [3]. (iii) The third
approximation is that obtained by ignoring the complete reconstruction operator, which makes the implemen-
tation of the adjoint trivial. In fact, the Jacobian is identical to the first-order approximate Jacobian already used
for the implicit time stepping. In practice, ½oeR=oU�TKJ ¼ ½oJ=oU�T is solved instead of the adjoint equation
defined in Eq. (9).

The price to pay for these simplifications is a detrimental effect on the accuracy of the computed gradi-
ent. This aspect has been treated extensively in the literature [2,29,18,27] and, therefore, detailed results in
terms of gradient accuracy for the numerical cases presented here are not shown. It is only mentioned that
when the first and the second approximations are used, the gradient shows an error of 0.1–2.5% compared
to that of the exact adjoint code. The error increases to a percentage of 10–30% when the third approxima-
tion is used.

To establish whether an approximation in the adjoint is acceptable, the error in the gradient is probably not
the best indication. It seems more appropriate to consider the effect which the gradient has on the behavior of
the optimization process. This aspect has received some attention only recently [12,9]. In the next section, opti-
mization results are presented, obtained by using the exact and the approximate adjoint codes. There, it is pos-
sible to validate the effectiveness of these codes by directly looking at the solutions of the optimization
problem.

7. Numerical results

The computations presented below have been performed on an unstructured mesh of triangles, see Fig. 5a,
with 12,161 nodes. In order to use the mesh for all test cases, the spring analogy of Section 5.2 has been
applied to the original mesh. For the transonic cases, to make sure that the mesh was capable of capturing
weak shocks, a finer mesh of 30,092 nodes has been used to verify the optimization results, i.e., to check that
the shock-free pressure distributions obtained on the first mesh after optimization are also obtained on the
finer mesh. It is not shown, but for all cases the verification was successful.

In terms of settings, the convergence of the flow/adjoint solver is stopped when the residual norm has been
reduced 6 orders of magnitude. For the optimization algorithms, a tolerance of 10�5 is used for the objective,
the constraints as well as for the changes in design variables.

The reference values for the lift and the drag coefficient are always their initial values, clR ¼ cl0 and
cdR ¼ cd0. In fact, the lift coefficient is kept constant and the objective function, the drag coefficient, is scaled
to unity at the beginning of the optimization. All other reference values can be extrapolated from Table 1. The
table shows the factors with which the initial values have to be multiplied in order to obtain the reference val-
ues. For instance, if for hR the factor is 0.9, it means that hR ¼ 0:9h0. The consequence of such a choice is that h
can only decrease 10% of its initial value.

7.1. NACA64A410 at M1 ¼ 0:75 and a = 0�

This airfoil is optimized with the SQP algorithm. The initial lift and drag coefficient are cl0 ¼ 0:6419 and
cd0 ¼ 0:0157. The pressure contours for the original airfoil are shown in Fig. 5b. The airfoils optimized
using the exact and the first two approximations are shock-free, see Figs. 5c–e. They achieve almost the

Fig. 5. Optimization of the NACA64A410 airfoil at M1 ¼ 0:75 and a = 0�.

Table 1
Factors with which initial values have to be multiplied to obtain reference values

ðt=cÞmaxR ruR rlR hR

NACA64A410 1.0 0.9 0.9 0.9
NACA64A410 (cm 6 cm0) 1.0 0.5 0.5 0.5
RAE2822 1.0 0.7 0.7 0.9
NACA0012 (M1 ¼ 0:75) 1.0 0.9 0.9 0.9
NACA0012 (M1 ¼ 1:5) 0.5 0.1 0.1 0.1

G. Carpentieri et al. / Journal of Computational Physics 224 (2007) 267–287 279
same reduction of 89.5% in the objective function (differences are less than 1%) for which they need 19, 17
and 34 adjoint and 49, 44 and 86 flow solutions, respectively. As can be seen from the contour plots, the
three airfoils are different. A better view of these differences is given in Fig. 6a where only the geometries of
the airfoil are shown. Compared to the airfoil obtained from the exact adjoint, the other two airfoils show a
maximum difference in y-coordinates of 5.6 · 10�3 and 2 · 10�3, respectively. As can be seen from Table 2
they all satisfy the design problem accurately. The airfoil obtained using the third approximation, see
Fig. 5f, shows three weak shocks on the upper side; its optimization has stalled. The objective function
has achieved a reduction of 87.6%. As can be seen from Table 2, the constraints g2 and g4 for this test case
are slightly violated.

7.2. NACA64A410 at M1 ¼ 0:75 and a = 0� with cm constraint

The previous airfoil has experienced a reduction of almost 17% of the pitching moment coefficient with
respect to its initial value, cm0 ¼ �0:1697. In order to avoid the pitching moment to decrease, an additional

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0 0.2 0.4 0.6 0.8 1

EXACT
APPROX 1
APPROX 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1

NACA64A410
EXACT

APPROX 1
APPROX 2
APPROX 3

Fig. 6. Optimization of the NACA64A410 airfoil at M1 ¼ 0:75 and a = 0�.

Table 2
Constraint values for the NACA64A410 case of Section 7.1

h g1 g2 g3 g4

EXACT �9:9� 10�6 0 �7:3� 10�1 �1:3� 10�1 �3:5� 10�1

APPROX 1 4:6� 10�7 0 �7:8� 10�1 �1:7� 10�1 �3:2� 10�2

APPROX 2 7:3� 10�6 0 �7:0� 10�1 �4:1� 10�7 �3:0� 10�1

APPROX 3 1:2� 10�4 0 8:5� 10�5 �3:2� 10�5 6:1� 10�6

280 G. Carpentieri et al. / Journal of Computational Physics 224 (2007) 267–287
constraint, g5 ¼ cm=cm0 � 1, is imposed (only for this case) so that cm 6 cm0. As can be seen from Table 1, the
constraints on the nose radii and on the trailing edge angle are chosen to be less strict than for the previous
case.

The airfoils optimized using the exact and the first two approximations are shock-free, see Figs. 5g, h and i,
respectively. They need 24, 22 and 19 adjoint and 51, 63 and 71 flow solutions, respectively. Compared to the
case with no pitching moment constraint, the differences in y-coordinates between the two approximations and
the exact code are smaller, 1:3� 10�3 and 1� 10�3, respectively, see Fig. 7a. The effect of the pitching moment
constraint on the Mach number distribution is evident by comparing Fig. 7b with the previous case, Fig. 6b.

7.3. RAE2822 at M1 ¼ 0:73 and a = 2�

This airfoil is optimized with the SQP algorithm. As can be seen in Fig. 8b, a shock is present on the upper
surface of the airfoil. The initial lift and drag coefficient are cl0 ¼ 0:8386 and cdR ¼ cd0 ¼ 0:008, respectively.
-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0 0.2 0.4 0.6 0.8 1

EXACT
APPROX 1
APPROX 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1

EXACT
APPROX 1
APPROX 2
APPROX 3

Fig. 7. Optimization of the NACA64A410 airfoil at M1 ¼ 0:75 and a = 0� with cm constraint.

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0 0.2 0.4 0.6 0.8 1

EXACT
APPROX 1
APPROX 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1

RAE2822
EXACT

APPROX 1
APPROX 2
APPROX 3

Fig. 8. Optimization of the RAE2822 airfoil at M1 ¼ 0:73 and a = 2�.

G. Carpentieri et al. / Journal of Computational Physics 224 (2007) 267–287 281
As before, the airfoils obtained from the exact and the first two approximate adjoint codes are shock-free,
see Fig. 8b. They achieve almost the same reduction in the objective function, 69%, for which they need 15, 20
and 10 adjoint and 39, 62 and 31 flow solutions, respectively. The geometry of the three airfoils is different, see
Fig. 8a, especially for the first 40% of the chord on the lower side. Maximum differences in y-coordinates are of
the order of 10�3. The optimization stalled when the third approximation was used and, see Fig. 8b, the airfoil
still exhibits a weak shock. The objective function reached 67% reduction.

7.4. NACA0012 at M1 ¼ 0:75 and a = 2�

The airfoil is optimized with the SLP algorithm. The initial lift and drag coefficient are cl0 ¼ 0:4225 and
cd0 ¼ 0:0125. The NACA0012 airfoil exhibits a strong shock on the upper side, see Fig. 9b, almost at half
of the chord.

The SLP algorithm seems to be insensitive to the approximations since almost identical shock-free airfoils
are obtained when using the exact and the first two approximations. The airfoils can be considered to be
almost identical, see Fig. 9a, since the maximum difference between the y-coordinates is of the order of
10�4, one order of magnitude less than in the previous case. A reduction of 92.8% is achieved in the objective
function which takes 40 flow/adjoint solutions for the exact code and 42 for the two approximate codes. When
the third approximation is used, also the SLP algorithm stalls and the resulting airfoil exhibits a shock on the
upper side, see Fig. 9b. The objective function reduced with 90.1%.
-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0 0.2 0.4 0.6 0.8 1

EXACT
APPROX 1
APPROX 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1

NACA0012
EXACT

APPROX 1
APPROX 2
APPROX 3

Fig. 9. Optimization of the NACA0012 airfoil at M1 ¼ 0:75 and a = 2�.

Fig. 10. Optimization of the NACA0012 airfoil at M1 ¼ 1:5 and a = 2�.

282 G. Carpentieri et al. / Journal of Computational Physics 224 (2007) 267–287
7.5. NACA0012 at M1 ¼ 1:5 and a = 2�

The SLP algorithm is also used to optimize the NACA0012 airfoil at supersonic flow conditions. The lift
and drag coefficient for these conditions are cl0 ¼ 0:1082 and cd0 ¼ 0:0999. In the supersonic case the shape
parameterization and the geometric constraints play a crucial role. It is well-known that the best shape for
these conditions is a thin airfoil with a very sharp nose. However, the situation of a sharp nose cannot be han-
dled properly with the shape parameterization given in Section 5.1, at least not without additional constraints.
The reason is that most of the time the two curves defining the airfoil tend to cross each other at the nose,
generating unfeasible shapes. Moreover, real-life airfoils do not have sharp noses but more likely noses with
small radii of curvature. Therefore, a supersonic optimization test case is very useful to verify whether the geo-
metric constraints introduced in this work are effective in ensuring a feasible shape during the optimization
process.

In Fig. 10a, a strong detached bow shock is visible on the original NACA0012 airfoil. In the optimization,
see Table 1, the maximum relative thickness of the section is allowed to halve. All other geometric quantities
can reduce up to 90% of their initial values. During the design process the objective function, see Fig. 11a,
smoothly reduced with 70%. This large reduction in drag is due to the repositioning of the shock, which is
almost attached to the nose at the end of the optimization. A close-up of the nose region, see Fig. 11c, reveals
that the shock is at less than 1% chord length upstream of the nose. The nose appears to be rounded and
smooth. The curvature of the nose is now 10% of the initial curvature since both the upper and lower curva-
ture constraints are critical. The same holds for the thickness constraint. The three constraints are depicted in
Fig. 11b, which shows how they approach zero. All other constraints are satisfied.

It is remarkable that also in this case, with its challenging flow conditions and large deformations, the whole
framework proves to be effective and robust. It is interesting to see that the final shape resembles that of len-
ticular airfoils, typically used in the supersonic regime.
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20

O
BJ

NUMBER OF ITERATIONS

-1

-0.8

-0.6

-0.4

-0.2

 0

 0 5 10 15 20

G

NUMBER OF ITERATIONS

G1
G2
G3

Fig. 11. Optimization of the NACA0012 airfoil at M1 ¼ 1:5 and a = 2�.

G. Carpentieri et al. / Journal of Computational Physics 224 (2007) 267–287 283
The results depicted in Figs. 10 and 11 have been obtained by the exact adjoint code. Although not shown,
results of the approximate adjoint codes follow the same trend as observed in the previous case with the SLP
algorithm, i.e., the y-coordinates of the airfoils obtained with approximate codes have very small differences,
of the order of 10�4 compared to the one in Fig. 11b.

8. Conclusions

The exact discrete adjoint of a finite-volume formulation for the Euler equations in two dimensions has
been implemented and tested. The implicit time stepping originally employed in the flow solver has been
adapted for the adjoint solver. For a single adjoint solution it requires one and half times the effort of the flow
solution. In order to address constrained shape optimization, the solver has been modified to efficiently take
into account multiple functionals. Simultaneous rather than sequential adjoint solutions were found to give
appreciable time saving.

An optimization framework coupling the flow and the adjoint solver to the shape parameterization and to
optimization algorithms, suitable for constrained optimization, has been implemented. The effectiveness and
accuracy of this framework has been demonstrated on transonic and supersonic test cases involving several
constraints. The shape parameterization provides a good representation of the design space and the capability
to accommodate large changes in shape.

Different approximations in the discrete adjoint, which have the potential of providing appreciable sim-
plifications in the implementation, have been considered. The effect of these approximations has been inves-
tigated directly on the optimization test cases. It appears that first-order accurate approximations are not
effective since for all the test cases considered with these, the optimization stalled. When the limiter is
neglected, or when the numerical flux is approximated, it appears that the codes are as effective as the exact
adjoint code, i.e., the optimization produces optimal airfoils that satisfy the design problem. However, espe-
cially when the SQP algorithm is used, it also appears that these optimal airfoils show appreciable differ-
ences in shape. From an engineering point of view, the latter aspect is not an issue since all these
designs are satisfactory. In future work, from a more theoretical point of view more light could be shed
on this.

Acknowledgements

This research was supported by the Dutch Technology Foundation STW, applied science division of NWO
and the technology program of the Dutch Ministry of Economic Affairs.

Appendix A. Derivation of the exact discrete adjoint

This appendix describes in more detail the edge-based assembly of the two matrix–vector products
Z ¼ oR

oU
P; Z ¼ oR

oU

T

P: ðA:1Þ
N is the number of nodes and E the number of edges. The residual at node i is defined as the sum of the numeri-
cal fluxes across the control volume interfaces oVik,
ri ¼
XNi

k¼1

Uðûi; ûk; nikÞ ¼
XNi

k¼1

bUik: ðA:2Þ
These interfaces are lying at the mid-points of the edges ik surrounding the node i. The hat on the conservative
variables means that they have been extrapolated to the edge mid-point. The hat is also used on the numerical
flux to indicate that it is evaluated using extrapolated variables.

For a linear reconstruction a distance-one stencil is used. As can be seen from Fig. A.1, the stencil Ni of a
node i includes the distance-one neighbors of such a node as well as the node itself. Therefore, the recon-
structed variable at node i has a dependence ûi ¼ ûiðuk; k 2NiÞ.

Fig. A.1. Median dual around node i. The number of distance-one neighbors is Ni ¼ 5 and the stencil is Ni ¼ ½i; k1; k2; k3; k5; k7�.

284 G. Carpentieri et al. / Journal of Computational Physics 224 (2007) 267–287
The residual vector is collected on each edge exploiting the conservation property. A pointer is associated
with each edge, it points to the left and the right node sharing the edge (edge-based data structure). Using this
pointer, a loop on the edges is performed and the computed flux is added in the left node i and subtracted in
the right node j:
ri ¼ ri þ bUij;

rj ¼ rj � bUij; ðij ¼ 1;EÞ:
ðA:3Þ
This loop can be modified to perform the assembly of the two matrix–vector products given in Eq. (A.1). In
fact, each component i of the first matrix–vector product in Eq. (A.1) is given by:
zi ¼
XN

k¼1

ori

ouk
pk: ðA:4Þ
Differentiating Eq. (A.3) with respect to uk, multiplying by pk and adding an additional internal loop on the
nodes gives:
ori

ouk
pk ¼

ori

ouk
pk þ

o bUij

ouk
pk;

orj

ouk
pk ¼

orj

ouk
pk �

o bUij

ouk
pk; ðij ¼ 1;E; k ¼ 1;NÞ;

ðA:5Þ
where according to Eq. (A.4) the quantities accumulated on the nodes i and j are the components zi and zj of
Z. This means that the nested loop given in Eq. (A.5) can be rewritten as
zi ¼ zi þ
o bUij

ouk
pk;

zj ¼ zj �
o bUij

ouk
pk; ðij ¼ 1;E; k ¼ 1;NÞ:

ðA:6Þ
As indicated in Eq. (A.2) the numerical flux is dependent on the left and right states i and j. Because of the
reconstruction, such a dependency must be extended to the stencils of the two nodes since
ûi ¼ ûiðuk; k 2NiÞ and ûj ¼ ûjðuk; k 2NjÞ.

The latter means that the numerical flux Jacobian is non-zero only for the elements contained in the stencil
of node i and node j ðo bUij=ouk 6¼ 0; k 2Ni [NjÞ. As a consequence, in Eq. (A.6) the inner loop on the nodes
can be limited to a summation on both stencil Ni and Nj to give:

G. Carpentieri et al. / Journal of Computational Physics 224 (2007) 267–287 285
zi ¼ zi þ
X
k2Ni

o bUij

ouk
pk þ

X
k2Nj

o bUij

ouk
pk;

zj ¼ zj �
X
k2Ni

o bUij

ouk
pk �

X
k2Nj

o bUij

ouk
pk; ðij ¼ 1;EÞ:

ðA:7Þ
The numerical flux derivative is with respect to the cell average uk. However, the numerical flux is actually
evaluated with the reconstructed variables so that the chain rule can be applied to isolate the flux derivative
from the reconstruction derivatives. In doing this the numerical flux derivative can be taken out of the stencil
summation:
zi ¼ zi þ
o bUij

oûi

X
k2Ni

oûi

ouk

����
ij

pk þ
o bUij

oûj

X
k2Nj

oûj

ouk

����
ij

pk;

zj ¼ zj �
o bUij

oûi

X
k2Ni

oûi

ouk

����
ij

pk �
o bUij

oûj

X
k2Nj

oûj

ouk

����
ij

pk; ðij ¼ 1;EÞ:
ðA:8Þ
The subscript ij is necessary to remind that oûi=ouk and oûj=ouk are evaluated on the ij edge. A careful exam-
ination of Eq. (A.8) shows that it is equivalent to Eq. (11). The edge-based assembly of the transposed Jaco-
bian-vector product Z ¼ ½oR=oU�TP can be derived from Eq. (A.8) keeping in mind also the matrix form given
in Eqs. (11) and (12). The numerical flux Jacobians are easy to transpose since they lie on the diagonal of the
matrix. The summation on the stencil for the reconstruction operator is more complicated since it involves off-
diagonal terms. Such a summation is on the row elements. Since by transposition they have to turn into col-
umn elements, the summation becomes a scattering on the stencil nodes:
�zp ¼ �zp þ
oûi

oup

����T
ij

o bUij

oûi

T

ðpi � pjÞ; p 2Ni;

�zq ¼ �zq þ
oûj

ouq

����T
ij

o bUij

oûj

T

ðpi � pjÞ; q 2Nj; ðij ¼ 1;EÞ:

ðA:9Þ
This assembly is equivalent to the matrix form given in Eq. (12). The assembly of both loops in Eqs. (A.9) and
(A.8) involves, for each edge, the distance-one neighbors of the two nodes that share the edge. Thus, in order
to perform the assembly in one pass, a pointer linking each node with its distance-one neighbors must be made
available. In the present work, such a pointer is available from the solution of the linear system, see Section
4.2. Alternatively, a two-pass assembly of both loops may be performed using only the edge-based data struc-
ture of the flow solver, i.e., the edge pointer to the left and right nodes. The latter approach would be more
efficient since the number of operations are the minimum necessary.

The reconstruction contribution is as follows:
oûi

ouk
¼ oûi

ov̂i

ov̂i

ovk

ovk

ouk
;

ov̂i

ovk
¼

oq̂i=oqk 0 0 0

0 oûi=ouk 0 0

0 0 ov̂i=ovk 0

0 0 0 op̂i=opk

26664
37775; ðA:10Þ
where the first and third matrices are transformation matrices between conservative and primitive variables.
They are necessary if the reconstruction is on the primitive variables. For instance, considering for the y-veloc-
ity a reconstruction of the type
v̂i ¼ vi þ
ri

2
rvT

i ðxj � xiÞ; ðA:11Þ
differentiation with respect to vk gives
ov̂i

ovk
¼ dik þ

1

2

ori

ovk
rvT

i ðxj � xiÞ þ
ri

2

orvi

ovk

T

ðxj � xiÞ; ðA:12Þ

286 G. Carpentieri et al. / Journal of Computational Physics 224 (2007) 267–287
where dik is the Kronecker delta. If the limiter contribution ori/ovk is neglected, only the gradient contribution
must be computed. Such a contribution is straightforward since only metrics quantities are involved. In the
case of the Green–Gauss gradient and similar for the weighted least-squares gradient:
rvi ¼
1

2V i

XNi

k¼1

ðvi þ vkÞnik;
orvi

ovk
¼

1
2V i

nik; i 6¼ k;

1
2V i

PNi

k¼1

nik; i ¼ k;

8><>: ðA:13Þ
where Vi is the volume of the cell around node i. Looking at the definition of the limiter used in this work
(Eq. (5)), the differentiation is not as easy as for the gradient. The limiter has a dependency on all the nodes
in the stencil and the differentiation does not involve metric quantities only. For space reasons, this differen-
tiation is not given here.

For the contribution of the numerical flux, the exact differentiation of Roe’s approximate Riemann solver is
available from previous work [3]:
oUij

oui
¼ 1

2
ðAðui; nijÞ þ jAð~uij; nijÞjÞ þ M1M2 þM3ð ÞM4;

oUij

ouj
¼ 1

2
ðAðuj; nijÞ � jAð~uij; nijÞjÞ þ M1M2 þM3ð ÞM5: ðA:14Þ
The five matrices M1, M2, M3, M4 and M5 have been derived here following an approach similar to that used
in the original reference. For the most complex of these matrices, M3, symbolic differentiation is used. This
differentiation can also account for the presence of a parabolic entropy fix [15] in the Roe flux. The latter
is available in the present work and, apart from ensuring that the numerical dissipation is never zero, it also
removes the lack of differentiability caused by the absolute value in the Roe flux. Nevertheless, when the en-
tropy fix is not used, in both the numerical flux and its Jacobian, there are no appreciable differences according
to the numerical experiments. It appears that in practice the lack of continuous differentiability is not an issue.
For instance, the quadratic convergence shown in Fig. 2b has been obtained without any entropy fix. The dif-
ferentiation given in Eq. (A.14) can also be used for the linearization of the far-field boundary fluxes computed
with flux-vector splitting.
References

[1] O. Amoignon, M. Berggren, Adjoint of a median-dual finite-volume scheme: application to transonic aerodynamic shape
optimization, Technical Report 2006-13, Uppsala University, 2006.

[2] W.K. Anderson, D.L. Bonhaus, Airfoil design on unstructured grids for turbulent flows, AIAA J. 37 (1999) 185–191.
[3] T.J. Barth, Analysis of implicit local linearization techniques for upwind and TVD algorithms, AIAA Paper No. 87–0595, 1987.
[4] T.J. Barth, Aspects of unstructured grids and finite-volume solvers for the Euler and Navier–Stokes equations, Lecture Series, vol. 06,

Von Karman Institute for Fluid Dynamics, 1991.
[5] T.J. Barth, S.W. Linton, An unstructured mesh Newton solver for compressible fluid flow and its parallel implementation, AIAA

Paper No. 95–0221, 1995.
[6] F. Beux, A. Dervieux, Exact-gradient shape optimization of a 2-D Euler flow, Finite Elem. Anal. Des. 12 (1992) 281–302.
[7] G. Carpentieri, A finite volume solver for unstructured meshes, Technical Report, Delft University of Technology, in press.
[8] G. Carpentieri, M.J.L. van Tooren, M. Kelly, R. Cooper, Airfoil optimization using an analytical shape parameterization, CEIAT

Paper No. 05–0073, 2005.
[9] G. Carpentieri, M.J.L. van Tooren, B. Koren, Comparison of exact and approximate discrete adjoint for aerodynamic shape

optimization, ICCFD 4, 2006.
[10] G. Carpentieri, M.J.L. van Tooren, B. Koren, Aerodynamic shape optimization by means of sequential linear programming

techniques, ECCOMAS CFD, 2006.
[11] L.A. Catalano, A. Dadone, V.S.E. Daloiso, G. Mele, Progressive optimization using orthogonal shape functions and efficient finite-

difference sensitivities, AIAA Paper No. 2003-3961, 2003.
[12] R.P. Dwight, J. Brezillon, Effect of various approximations of the discrete adjoint on gradient-based optimization, AIAA Paper No.

2006-690, 2006.
[13] M.B. Giles, M.C. Duta, J.-D. Müller, N.A. Pierce, Algorithm developments for discrete adjoint methods, AIAA J. 41 (2003) 198–205.
[14] M.B. Giles, N.A. Pierce, An introduction to the adjoint approach to design, Flow Turbul. Combust. 65 (2000) 393–415.
[15] A. Harten, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys. 49 (1983) 357–393.
[16] A. Jameson, Aerodynamic design via control theory, J. Sci. Comput. 3 (1988) 233–260.

G. Carpentieri et al. / Journal of Computational Physics 224 (2007) 267–287 287
[17] A. Jameson, S. Yoon, Lower-upper implicit schemes with multiple grids for the Euler equations, AIAA J. 25 (1987) 929–935.
[18] C.S. Kim, C. Kim, O.H. Rho, Sensitivity analysis for the Navier–Stokes equations with two-equation turbulence models, AIAA J. 39

(2001) 838–845.
[19] B. Koren, Defect correction and multigrid for an efficient and accurate computation of airfoil flows, J. Comput. Phys. 77 (1988) 183–

206.
[20] B. Koren, A robust upwind discretization method for advection, diffusion and source terms, Numerical Methods for Advection-

Diffusion Problems, Notes on Numerical Fluid Mechanics, vol. 45, Vieweg, 1993, pp. 117–138.
[21] G. Kuruvila, S. Ta’asan, M.D. Salas, Airfoil design and optimization by the one-shot method, AIAA Paper No. 95–0478, 1995.
[22] H. Luo, J.D. Baum, R. Löhner, A fast matrix-free implicit method for compressible flows on unstructured grids, J. Comput. Phys. 146

(1998) 664–690.
[23] D.J. Mavriplis, On convergence acceleration techniques for unstructured meshes, AIAA Paper No. 98–2966, 1998.
[24] D.J. Mavriplis, Formulation and multigrid solution of the discrete adjoint for optimization problems on unstructured meshes, AIAA

Paper No. 05–0319, 2005.
[25] B. Mohammadi, A new optimal shape design procedure for inviscid and viscous turbulent flows, Int. J. Numer. Meth. Fluids 25

(1997) 183–203.
[26] J.-D. Müller, P. Cusdin, On the performance of discrete adjoint CFD codes using Automatic Differentiation, Int. J. Numer. Meth.

Fluids 47 (2003) 939–945.
[27] N. Nemec, D.W. Zingg, Newton–Krylov algorithm for aerodynamic design using the Navier–Stokes equations, AIAA J. 40 (2002)

1146–1154.
[28] J.C. Newman III, A.C. Taylor III, R.W. Barnwell, P.A. Newman, G.J.-W. Hou, Overview of sensitivity analysis and shape

optimization for complex aerodynamic configurations, J. Aircraft 36 (1999) 87–96.
[29] E.J. Nielsen, W.K. Anderson, Aerodynamic design optimization on unstructured meshes using the Navier–Stokes equations, AIAA J.

37 (1999) 1411–1419.
[30] E.J. Nielsen, J. Lu, M.A. Park, D.L. Darmofal, An implicit, exact dual adjoint solution method for turbulent flows on unstructured

grids, Comput. Fluids 33 (2004) 1131–1155.
[31] J. Reuther, Aerodynamic shape optimization for supersonic aircraft, AIAA Paper No. 2002-2838, 2002.
[32] G.M. Robinson, A.J. Keane, Concise orthogonal representation of supercritical airfoils, J. Aircraft 38 (2001) 580–583.
[33] P.L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys. 43 (1981) 357–372.
[34] J.A. Samareh, Survey of shape parameterization techniques for high-fidelity multidisciplinary shape optimization, AIAA J. 39 (2001)

877–884.
[35] V. Selmin, L. Formaggia, Unified construction of finite element and finite volume discretizations for compressible flows, Int. J.

Numer. Meth. Eng. 39 (1996) 1–32.
[36] J. Shim, K.D. Lee, A. Verhoff, An efficient aerodynamic design method using asymptotic solution of Euler equations, AIAA Paper

No. 02–3141, 2002.
[37] <http://tapenade.inria.fr:8080/tapenade/index.jsp> Software Tapenade� INRIA 2002, version 2.0.
[38] J.I. Trépanier, J. Lépine, F. Pépin, An optimized geometric representation for wing profile using NURBS, CASI J. 46 (2000) 12–19.
[39] G.N. Vanderplaats, Numerical Optimization Techniques for Engineering Design, third ed., Vanderplaats Reasearch & Development,

Inc., 2001.
[40] V. Venkatakrishnan, Convergence to steady state solutions of the Euler equations on unstructured grids with limiters, J. Comput.

Phys. 118 (1995) 120–130.
[41] V. Venkatakrishnan, D.J. Mavriplis, Implicit solvers for unstructured meshes, J. Comput. Phys. 105 (1993) 83–91.
[42] A. Verhoff, D. Stooksberry, A.B. Cain, An efficient approach to optimal aerodynamic design Part 1: analytic geometry and

aerodynamic sensitivities, AIAA Paper No. 93–0099, 1993.
[43] P. Wesseling, Principles of Computational Fluid Dynamics, Springer, 2001.

http://tapenade.inria.fr:8080/tapenade/index.jsp

	Adjoint-based aerodynamic shape optimization on unstructured meshes
	Introduction
	Finite volume formulation
	Adjoint formulation: exact discrete adjoint for the MUSCL scheme
	The adjoint method
	The derivation of the exact discrete adjoint

	Time marching of flow and adjoint equations
	Implicit pseudo-time stepping
	Linear system of equations

	Shape parameterization, mesh deformation and geometric sensitivities
	Shape parameterization by means of Chebyshev polynomials
	Mesh deformation
	Geometric sensitivities via Automatic Differentiation

	Shape optimization
	The optimization problem
	Optimization algorithms
	Approximation in the discrete adjoint

	Numerical results
	NACA64A410 at {M}_{\infty}=0.75 and alpha =0 deg
	NACA64A410 at {M}_{\infty}=0.75 and alpha =0 deg with cm constraint
	RAE2822 at {M}_{\infty}=0.73 and alpha =2 deg
	NACA0012 at {M}_{\infty}=0.75 and alpha =2 deg
	NACA0012 at {M}_{\infty}=1.5 and alpha =2 deg

	Conclusions
	Acknowledgements
	Derivation of the exact discrete adjoint
	References

